
FMS: the GFDL Flexible
Modeling System

V. Balaji
SGI/GFDL

OASIS Workshop
CERFACS, Toulouse

19 October 2000

GFDL

GFDL is a climate modeling centre. The primary focus is the use of coupled
climate models for simulations of climate variability and climate change on
short and long time scales.

Current computing capability: Cray T90 24p, T3E 128p.

Future computing capability: � � �� � � � � �� p Origin 3000.

1

GFDL models

� MOM: Modular Ocean Model.

� FMS: Flexible Modeling System.

� Hurricane model.

� HIM: isopycnal model.

� 2 non-hydrostatic atmospheric models.

� Older models: SKYHI, Supersource.

2

Modernization

� Parallelism without compromising vector performance.

� Modular design for interchangeable dynamical cores and physical pa-
rameterizations. Several dynamical cores are currently available.

� Distributed development model: many contributing authors. Use high-
level abstract language features for encapsulation, polymorphism.

3

FMS: Flexible Modeling System
Jeff Anderson, Balaji, Paul Kushner, Ron Pacanowski, Bruce Wyman, ...

Dynamical cores:

� Atmosphere:

– Hydrostatic spectral

– Hydrostatic Arakawa B grid

– Hydrostatic Arakawa C grid (*)

– Non-hydrostatic Arakawa C grid (*)

� Ocean:

– B grid

– C grid (*)

– Generalized vertical coordinate (*)

4

FMS: Physical processes

� Atmosphere:

– Deep convection.

– Shallow convection.

– Moist processes.

– Cloud mass flux.

– Ozone, CFCs, greenhouse gases.

– Radiation.

– Turbulence.

– Planetary boundary layer.

– Land surface, ocean surface.

5

Elements of FMS

FMS consists of:

component models code describing the evolution of a climate model sub-
system: atmosphere, ocean, land, ice, ... also often called dynamical
cores.

drivers coupled and solo.

parameterizations physics routines.

coupler routine for exchanging data at model boundaries.

6

Features of FMS

� FMS runs as a single executable.

� Dynamical cores for a particular climate subsystem component present
a uniform boundary interface.

� Component models may run serially or simultaneously.

� Standard interface for column physics.

� Shared code for parallelism, I/O, diagnostics, calls to standard scien-
tific libraries.

7

FMS calling structure

main

atmos

physics

shared ocean

physicscoupler

fluxes

� �
� � � �

� � � � � ��

��
����

�������

������
�������

� � � � � �
� � � � � ��

���
�������

����

� � �
� � � � � � �

� ��� ��

	

8

Shared code

� MPP modules: communication kernels, domain decomposition and update, parallel
I/O.

� Diagnostics handler: diagnostic registry, call by alarm.

id = register_diag_field(...)

� Scientific libraries.

real :: grid(:,:,:)
complex :: fourier(:,:,:)
fourier = fft(grid)

9

Parallel programming interface

GFDL has a homegrown parallelism API written as a set of 3 F90 modules:

� mpp_mod is a low-level interface to message-passing APIs (currently
SHMEM and MPI; MPI-2 and Co-Array Fortran to come);

� mpp_domains_mod is a set of higher-level routines for domain de-
composition and domain updates;

� mpp_io_mod is a set of routines for parallel I/O.

http://www.gfdl.gov/˜vb

10

!domaintypes of higher rank can be constructed from type domain1D
type, public :: domain2D

sequence
type(domain1D) :: x
type(domain1D) :: y
integer :: pe
type(domain2D), pointer :: west, east, south, north

end type domain2D

(1,1)

(ni,nj)

(is,js)

(ie,je)

11

mpp domains mod calls:

� mpp_define_domains()

� mpp_update_domains()

type(domain2D) :: domain(0:npes-1)
call mpp_define_domains((/1,ni,1,nj/), domain, xhalo=2, yhalo=2)
...
!allocate f(i,j) on data domain
!compute f(i,j) on compute domain
...
call mpp_update_domains(f, domain(pe))

12

Parallel I/O
type(domain2D) :: domain(0:npes-1)
type(axistype) :: x, y, z, t
type(fieldtype) :: field
integer :: unit
character*(*) :: file
real, allocatable :: f(:,:,:)
call mpp_define_domains((/1,ni,1,nj/), domain)
call mpp_open(unit, file, action=MPP_WRONLY, format=MPP_IEEE32, &
access=MPP_SEQUENTIAL, threading=MPP_MULTI, fileset=MPP_MULTI)

call mpp_write_meta(unit, x, ’X’, ’km’, ...)
...
call mpp_write_meta(unit, field, (/x,y,z,t/), ’Temperature’, ’kelvin’, ...)
...
call mpp_write(unit, field, domain(pe), f, tstamp)

13

mpp_io_mod output modes

mpp_io_mod supports three types of parallel I/O:

� Single-threaded I/O: a single PE acquires all the data and writes it out.

� Multi-threaded, single-fileset I/O: many PEs write to a single file.

� Multi-threaded, multi-fileset I/O: many PEs write to independent files
(requires post-processing).

14

Coupler
Used for the exchange of fluxes between models. Key features include:

Conservation: required for long runs.

Resolution: the coupler places no constraints on component model timesteps and spa-
tial resolution. Supports both explicit and implicit timesteps, and the exchange com-
putation is not rate-limiting.

Exchange grid: union of component model grids, where detailed flux computations are
performed (Monin-Obukhov, tridiagonal sover for implicit diffusion, ...)

Fully parallel: Calls are entirely processor-local: exchange software will perform all inter-
processor communication.

Modular design: uniform interface to main calling program.

No brokering: each experiment must explicitly set up field pairs.

Single executable.

15

Implicit timestepping
type (atmos_boundary_data_type) :: Atm
type (ocean_boundary_data_type) :: Ocean
type (land_boundary_data_type) :: Land
type (ice_boundary_data_type) :: Ice
do no = 1, num_ocean_calls

call flux_ocean_to_ice (Ocean, Ice, ...)
call ice_bottom_to_ice_top (Ice, ...)
do na = 1, num_atmos_calls

Time = Time + Time_step_atmos
call update_atmos_model_down (Atm, ...)
call flux_down_from_atmos (Time, Atm, Land, Ice, ...)
call update_land_model_fast (Land, ...)
call update_ice_model_fast (Ice, ...)
call flux_up_to_atmos (Time, Land, Ice, ...)
call update_atmos_model_up (Atm, ...)

enddo
call update_ice_model_slow (Ice, ...)
call flux_ice_to_ocean (Ice, ...)
call update_ocean_model (Ocean, ...)

16

Coupler example
subroutine flux_down_from_atmos (Time, Atm, Land, Ice, ...)
type (atmos_boundary_data_type), intent(in) :: Atm
type (land_boundary_data_type), intent(in) :: Land
type (ice_boundary_data_type), intent(in) :: Ice
call put_exchange_grid (Atm%flux_sw, ex_flux_sw, bd_map_atm)
call put_exchange_grid (Atm%flux_lw, ex_flux_lwd, bd_map_atm)
call gcm_vert_diff_surf_down (...)
call get_exchange_grid (ex_flux_sw, flux_sw_land, bd_map_land)
call get_exchange_grid (ex_flux_lw, flux_lw_land, bd_map_land)
call get_exchange_grid (ex_flux_sw, flux_sw_ice, bd_map_ice_top)

end subroutine flux_down_from_atmos

17

Future directions

� Testing and evaluation on a variety of coupled scenarios.

� Production on various systems, internal and external; external support
on a collaborative basis.

� Use of abstract distributed field datatypes for generic numeric kernels
on multiple stencils and grids.

18

Parallel numerical kernels
��� �� � ���

� �

� � 	
��
 � �� (1)

� � �� � � �
� �

� � �
 � � �� �� � � k �
�

� � � � � � �
� �
� F (2)

program shallow_water
type(scalar2D) :: eta(0:1)
type(hvector2D) :: utmp, u, forcing
integer tau=0, taup1=1

...
f2 = 1./(1.+dt*dt*f*f)
do l = 1,nt

eta(taup1) = eta(tau) - (dt*h)*div(u)
utmp = u - (dt*g)*grad(eta(taup1)) + (dt*f)*kcross(u) + dt*forcing
u = f2*(utmp + (dt*f)*kcross(utmp))
tau = 1 - tau
taup1 = 1 - taup1

end do
end program shallow_water

19

